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Abstract. We investigate the behavior of the nuclear force as a function of the light-quark masses mq in the
framework of chiral effective field theory at next-to-leading order. The unknown mq-dependent short-range
contribution is estimated by means of dimensional analysis. We calculate various observables for different
values of mq. We found no new bound states and a larger deuteron binding energy, BCL

D = 9.6±1.9+1.8
−1.0 MeV,

in the chiral limit.

PACS. 11.30.Rd Chiral symmetries – 13.75.Cs Nucleon-nucleon interactions (including antinucleons,
deuterons, etc.) – 21.30.Cb Nuclear forces in vacuum – 21.30.Fe Forces in hadronic systems and effective
interactions

1 Introduction

Chiral Perturbation Theory (CHPT) is a well-established
model-independent and systematic tool for calculating
low-energy properties of hadronic systems. It is based
upon the approximate and spontaneously broken chiral
symmetry of QCD. Starting from the most general chiral
invariant effective Lagrangian for Goldstone bosons (pions
in the two-flavor case of light up and down quarks) and
matter fields (nucleons, ∆-excitations, . . .) low-energy S-
matrix elements can be calculated via simultaneous ex-
pansion in the low external momenta and quark mass
(or, equivalently, pion mass1). If two and more nucleons
are considered, the interaction becomes too strong to be
treated perturbatively and an additional nonperturbative
resummation of the amplitude is necessary. Since the ab-
solute values of the running up and down quark masses
at the scale 1GeV [1] mu � 5MeV, md � 9MeV are
rather small, one expects that hadronic properties at low
energy do not change strongly in the chiral limit of (CL)
Mπ → 0. This feature is crucial for the chiral expansion
to make sense and is certainly true for the π and πN sys-
tems, where the interaction becomes arbitrarily weak in
the CL and for vanishing external momenta. The purpose
of this work is to look at the NN system in the CL (and,
in general, for values of the pion mass different from the
physical one), which is much more complicated due to the

a e-mail: Evgeni.Epelbaum@tp2.ruhr-uni-bochum.de
1 In the isospin limit with the quark masses mu = md = m̂

one finds for the pion mass Mπ: M2
π = 2m̂B(1+O(m̂)), where

B is a constant.

nonperturbative aspect. We stress that the question about
the Mπ-dependence of the nuclear force is not only of aca-
demic interest, but also of practical use for interpolating
results from the lattice gauge theory, see [2] for more dis-
cussion. For example, the S-wave scattering lengths have
been calculated recently on the lattice using the quenched
approximation [3]. Another interesting application is re-
lated to imposing bounds on the time-dependence of fun-
damental couplings from the two-nucleon sector, as dis-
cussed in [4].

2 Mπ-dependence of the nuclear force

A convenient way of (nonperturbative) evaluation of the
S-matrix elements for nucleon-nucleon (NN) interactions
from the chiral effective Langangian suggested by Wein-
berg [5] is to apply CHPT methods to derive the effective
NN potential. One can then calculate observables by solv-
ing the appropriate Lippmann-Schwinger equation. In [6]
we have introduced a scheme, which leads to an energy-
independent and Hermitian NN potential and is based
upon the method of unitary transformation [7]. At lead-
ing order (LO) the potential is given by the (static) one-
pion exchange (OPE) and two contact interactions with-
out derivatives:

V LO=−1
4

g2
πN

m2
N

τ1·τ2
(σ1 · q)(σ2 · q)

q2+M2
π

+CS+CT σ1·σ2, (1)

where gπN is the pion-nucleon coupling constant, mN the
nucleon mass, q the nucleon momentum transfer, σ (τ )
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Fig. 1. NLO corrections to the NN potential. The solid
(dashed) lines refer to nucleons (pions). The heavy dots de-
note the leading vertices, while the solid rectangles represent
vertices of higher chiral dimension as defined in [6,8].

refer to spin (isospin) Pauli matrices and CS,T denote
the low-energy constants (LECs). At next-to-leading order
(NLO) the correction have to be taken into account from:

1. contact terms with two derivatives or one M2
π-

insertion,
2. renormalization of the OPE,
3. renormalization of the contact terms,
4. two-pion exchange (TPE).

The corresponding diagrams are depicted in fig. 1 in sym-
bolic form, i.e. we only show the general topologies with-
out indicating specific time orderings. The energy denom-
inators and overall factors in each individual case can be
read off from the operators given in [6]. For a detailed
discussion of the NLO corrections the reader is referred
to [8]. Apart from the explicit Mπ-dependence of the OPE
in eq. (1) an additional implicit dependence of the ratio
gπN/mN on the pion mass has to be taken into account at
NLO. For an arbitrary value M̃π of the pion mass one has

gπN

mN
=

gA

Fπ

(
1− g2

AM̃2
π

4π2F 2
π

ln
M̃π

Mπ
− 2M̃2

π

gA
d̄18

+
(

g2
A

16π2F 2
π

− 4
gA

d̄16+
1

16π2F 2
π

l̄4

)(
M2

π−M̃2
π

))
, (2)

where gA = 1.26, Fπ = 92.4MeV and Mπ = 138MeV
denote the physical values of the nucleon axial vector cou-
pling, pion decay constant and pion mass, respectively.

Further, l̄4, d̄18 and d̄16 are LECs related to pion and
pion-nucleon interactions. We use the following values for
these LECs: l̄4 = 4.3 [9], d̄16 = −1.23+0.32

−0.53 GeV−2 [10]
and d̄18 = −0.97GeV−2. The constant d̄18 is fixed from
the observed value of the Golberger-Treiman discrepancy
with gπN = 13.2 [11]. Note further that for the LEC d̄16

we use an average of three values given in [10], which re-
sult from different fits. The shown uncertainty is defined
in the way to cover the whole range of values from [10].

The remaining M̃π-dependence of the nuclear force at
NLO is given by the TPE [8] as well as by the short-range
terms of the form

V cont
M̃π

= M̃2
π

[
D̄S + D̄T (σ1 · σ2)

−(
βS + βT (σ1 · σ2)

)
ln

M̃π

Mπ

]
, (3)

where the constants βS,T are given in terms of gA, Fπ and
CT [8]. All other contact terms do not depend on the pion
mass and the corresponding LECs C1,...,7 can be adopted
from the analysis of [12], performed for the physical value
of M̃π. The essential difficulty in extrapolating the nuclear
forces in the pion mass is due to the fact that one cannot
disentangle the short-range contribution given in eq. (3)
from the LO one in eq. (1) in the NN system and at
the physical point M̃π = Mπ

2. Thus, the LECs DS and
DT are unknown. In order to proceed further we assume
natural values for these constants, i.e.:

D̄S,T =
αS,T

F 2
πΛ2

χ

, where αS,T ∼ 1, (4)

and Λχ � 1GeV. In [13] we have shown that all values
of the dimensionless coefficients α related to the contact
terms lie at NLO in the range −2.1 . . . 3.2 for all cut-offs
employed. In the following we will make a conservative
estimation for αS,T :

−3.0 < αS,T < 3.0. (5)

Certainly, the lack of information about the values of DS,T

is the main source of uncertainty of our analysis. We have
adopted the same procedure to regularize the LS equation
as in [12], i.e. the potential V (p′,p) is multiplied by the
regulator functions f expon

R (|p|), f expon
R (|p′|), whose precise

form is given in [12]. In the next section we will show how
various observables behave with M̃π.

3 Results

Having specified the NN interaction at arbitrary value of
M̃π we are now in the position to calculate observables.
Let us begin with the behavior of the NN phase shifts in

2 This can be done in the processes including pions such as,
e.g., pion-deuteron scattering. Such an analysis is however not
yet available.
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Fig. 2. Deuteron BE versus M̃π. The shaded areas show
allowed values. The light-shaded band corresponds to our main
result with the uncertainty due to the unknown LECs D̄S,T .
The dark-shaded band gives the additional uncertainty due to
the uncertainty of d̄16. The heavy dot shows the BE for the
physical case M̃π = Mπ.

the CL. First of all we would like to stress that the OPE
in eq. (1) leads to a significant scattering even in higher
partial waves due to the Coulomb-like pion propagator in
the CL. Further, no effective range expansion of the form

k2l+1 cot δl(k) = − 1
al

+ rl
k2

2
+ v2

l k4 + · · · , (6)

exists due to the vanishing pion mass3. In eq. (6) k is the
c.m. momentum and l the angular momentum. It is easy
to derive the low-momentum behavior of δl(k) at least
for large l, where the potential becomes weak and one
can use the Born approximation for the T -matrix. It is
then sufficient to look at on-the-energy shell matrix el-
ements of the OPE in the CL V CL

OPE(k), which strongly
dominantes the nuclear interaction at low momenta. We
found that V CL

OPE(k) = 0 in all spin-singlet (s = 0) and
V CL

OPE(k) = γ in the spin-triplet (s = 1) channels, where
the constant γ depends on the partial wave. As a conse-
quence, we expect in the CL a strong reduction of δl(k)
in the s = 0 channels and linear with k growth of δl(k) in
the s = 1 channels. Numerical analysis performed in [8]
confirms this estimation. It remains to stress that we
have not found new bound states in the CL in agree-
ment with the previous work by Bulgac et al. [14], al-
though a strong enhancement of δl(k) is observed in many
cases4. Last but not least, we found smaller (in magnitude)
and more natural values for the two S-wave scattering
lengths in the chiral limit aCL(1S0) = −4.1 ± 1.6+0.0

−0.4 fm
and aCL(3S1) = 1.5± 0.4+0.2

−0.3 fm, where the first indicated
error refers to the uncertainty in the value of D̄3S1 and

3 The maximal radius of convergence of the effective range
expansion is proportional to M̃2

π and goes to zero in the CL.
4 For example, δl(k) in the 3P0 partial wave reaches a max-

imum of ∼ 32◦ to be compared with ∼ 11◦ in the physical
case.
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Fig. 3. Deuteron wave functions in the CL compared with
the ones in the physical case. The upper and lower bands (solid
and dashed lines) refer to the S- and D-wave functions u(r)
and w(r) in the CL (in the physical case), respectively. For
remaining notations see fig. 2.

d̄16 being set to the average value d̄16 = −1.23GeV−2,
while the second indicated error shows the additional un-
certainty due to the uncertainty in the determination of
d̄16 as described before.

We have also calculated the deuteron binding energy
(BE) as a function of M̃π. Our results for the cut-off Λ =
560MeV are depicted in fig. 2. According to our complete
NLO analysis deuteron is stronger bound in the chiral
limit with the BE BCL

D = 9.6± 1.9+1.8
−1.0 MeV. For the root-

mean-square radius of the deuteron in the CL we found a
smaller value rCL

D = 1.27± 0.09± 0.04 fm to be compared
with the observed one rD = 1.97 fm. A more short-range
nature of the deuteron in the CL is also clearly visible
in the deuteron wave function presented in fig. 3. It is
interesting that the probability for the deuteron to be in
the D-state is strongly enhanced in the CL (9.5% . . . 11.8%
compared to 3.5% for the NLO with the observed value of
the pion mass). The detailed description of the deuteron
properties will be published elsewhere.

4 Summary

To conclude, we did not find dramatic changes in the
properties of the NN systems in the CL, such as the ap-
pearance of new bound states. Various observables like
the deuteron binding energy and the S-wave scattering
lengths are shown to be more natural in the CL.
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